DIII-D Indicative Time Line to 2030

Presented by

RJ Buttery with thanks to many DIII-D colleagues

For distribution to participants in DOE open call process April 2025

Work supported by US DOE under DE-FC02-04ER54698. RJ Buttery/Open Call Background 2025/1

Context of DIII-D Planning

- DIII-D research team drafted a five year plan for 2024-29
 - From this plan DOE identified a number of projects to cost, also adding new wall

• Several of these have been authorized & started/completed funding:

- ECH to 10 lines Chimney divertor Tungsten wall LHCD completion
- Plus various parallel project that may come to DIII-D: pellets, SPF, NB RF sources
- Other projects have not been authorized yet, so are speculative
 - The attached chart shows where they might land if they are funded
 - It is too early to speculate whether FES would be motivated to fund them
- The detailed timeline does evolve as year to year budget decisions, and project designs and execution plans are developed
 - The attached chart shows a realistic integrated plan that includes started projects and options under consideration with FES

Dynamic program environment, responding to need & developments

Indicative Timeline of DIII-D Facility Development to 2030

CY:	2024 F	2025	F Y	2026 ^F _Y	20	027 F	2028 ^F _Y	202	7 F Y	2030 F
		Ops		Ops 16 wks O	ps 16 wks			Vent		Ops
Power	♦ 3MW EC	→ r	ising t	o → 	VIW EC			•	Upper	Divertor Re-opt
	♦ 16MW NB						NB RF sources	→ 20MW		
Exhaust	Shape Rise	Divertor		 'Chimney' D 	ivertor		 Wall change w rovised W dive 	ith 🔶	Add'l v	wall elements
		 Coupor 	n & tile t	esting of new ma	aterials		Teviseu w uwe		Lower I	iv Material 'B'
Innovation	♦ Helicon	+ HFS-L	HCD	• N	NT Armor II	option high	er κ & β 💦 🔶 NT D	ivertor 🔶	Spin Po	l Fusion
mnovalion		•	ITER &	innovative tile te	sting camp	aign	DMS: gas gun, El	A launch 🔶	Runawa	y Electron Coil

Grey=funding tbd

- Projects in black are underway and receiving funding
- Projects in grey are subject to later decisions in DOE's annual funding process for DIII-D
 Actual funding commitments are not usually received until close to project start
- For detailed research plans, see the DIII-D Five Year Plan and the DIII-D Wall Proposal
 - TRL approach implemented to direct and assess progress

Heating, wall & divertor transform DIII-D capabilities to close gaps on FPP

Other Notes

- Note timing of wall vent depends on an engineering plan under development, and will be commenced at the earliest opportunity
 - Possibly a little earlier or later than shown
- DOE call instructs proposers to not propose experiments beyond FY28 on DIII-D
 - This does not preclude ongoing analysis to reach key deliverables and insights
- A separate memo is released on "Essential Service Roles"
 - See link: https://d3dfusion.org/wp-content/uploads/Essential-Service-Roles-at-DIII-D-250408.pdf
 - This covers activities that are essential to facility operation and provision of basic data to characterize plasma for most users.

For more details of the DIII-D mission

• See:

- Physics of Plasmas paper: "DIII-D's role as a national user facility in enabling the commercialization of fusion energy"
 - Phys. Plasmas 30, 120603 (2023), https://doi.org/10.1063/5.0176729
- DIII-D Five Year Plan (for users with internal access):
 - https://fusionga.sharepoint.com/:b:/r/sites/DIII-DHub/Shared%20Documents/Program%20Plans/Five-Year%20Research%20Plans/D3D-FYRP-2024-2029.pdf?csf=1&web=1&e=vP4cfE
- DIII-D Mission for new wall: "Gaps and Alternatives for the First Wall Material in DIII-D" (for users with internal access)
 - https://fusionaa.sharepoint.com/:b:/r/sites/FullWallChanaeOut/Shared%20Documents/4.%20Physics%20Evaluation%20/Gaps%20PVR%20etc.1/DIII-D%20Report%2006%20Gaps%20and%20Alternatives%20fo%20Wall%20Chanae%20-%20release%202410116.pdf?csf=1&web=1&e=livBKk

 Or contact and discuss with DIII-D team members through the usual Record of Discussion process

- Contact form and instructions here: https://d3dfusion.org/become-a-user/#rod

Following slides summarize key capabilities and mission

Additional Slides on DIII-D's Research Mission

& Capabilities Enabled by Planned Enhancements

To Resolve Approach Must Access Right Regime, Innovate & Project

Controlling variable

Through this approach, DIII-D continues to play a critical & needed role in defining future facilities

DIII-D is a Uniquely Flexible Tool to Resolve Required Solutions

HFS

LHCD

High flexibility to discover new solutions

- Shape, 3D fields, fueling, impurities, density control
- Drive/balance rotation, current & heat to e⁻'s or ions
- Rapid change outs to test new technologies, materials and systems in relevant regimes

Comprehensive measurements → Science

- Over 50 techniques: Kinetics, magnetic, particles, fast ions, neutrals, heat, impurities,
- Profiles, 2D, 3D, and imaging

Collaboratively led with 700 users

- -21 fields led by uni's, Nat Labs, intl & GA
- Joint development of strategy
- Oversite by independent User Board & PAC

Supporting ~100 institutions to pursue <u>their</u> priorities with an effective user model

Fusion Requires an Integrated Core-Edge-Technology Solution

Performance optimizes down two paths

- Steady state: Exploit natural improvements in stability
 & transport through shaping, profiles & high β
 - > Lower current, self-driven solutions decrease loads and can be sustained noninductively
 - > Need to validate projected solutions
- Pulsed: High confinement through high current
 - > Robust performance but increased instability, heat & stress
 - > Can stability be maintained?
- Common research needs to address power handling, transients, control, and required technologies

- Resolve compatibility between different parts of solution

Our goal is to explore these challenges and discover new & better solutions

Address 'Integrated Tokamak Exhaust & Performance' (ITEP) Gap

Tension between:

- High density radiative divertor solution
- High temperature high performance core

• Present devices tend to work between these regions

-To overcome must do both

DIII-D pursuing by

- Shape, volume and current rise
- Heating & current drive rises

high pressure

- Advanced divertor & core configurations with relevant wall
 - > Relevant physics regime for core-edge resolution & better solutions

Basis to develop integrated solution

DIII-D Enhancement in Next 5 Years will Confront the ITEP Gap and Resolve Integration with Key Fusion Technologies

Increased shaping, volume & current

- Raise pressure & density ightarrow close gap on reactor regimes
- Increase heating and current drive
 - Support high performance dissipative regimes
- Chimney divertor
 - Isolate key physics & test better concept
- Tungsten wall
 - Carbon free to explore new materials & qualify solutions
- Negative triangularity divertor (funding not yet determined
 - Potentially transformational path

Enables program of advanced plasma scenario & technology testing, and their integration

New Shape Volume & Current Rise Divertor Raises Pressure, Density and Opacity to Confront Core-Edge Challenge

- Increased shaping opens large expanse in operational space
 - Raises pressure and density access
 - Increases opacity & lowers neutral penetration
 - Gradients become transport-defined, like FPP, rather than by neutral deposition

Increases scope of pedestal exploration

- More advanced pedestals: Scope limits of performance
 - & dissipation through shaping & control techniques

Unique basis for core-edge integration & resolving reactor pedestal science

rise

Increased Heating & Current Drive Supports High Density and Temperature for Core-Edge-Wall Integration

7MW ECH ordered: directable electron heating or current drive, without fueling or torque

> 20MW NBI with RF sources being developed by NC State: bulk heating, on/off axis current drive & co/ctr for rotation control

New helicon current drive: installed & testing

New HFS LHCD installed: testing in 2025

Provides high flexibility & developing new technology

New Heating and Current Drive Enables DIII-D to Explore Candidate Power Plant Core Solutions

Core

Current

Density

Broad

Spectrum of plasma regimes

 From broad → peaked currents, high bootstrap → driven currents

Heating upgrades provide scope to explore solutions & address physics

Regime	Strength	Challenge			
Broad	βN=5 potential; Low disruptivity	Fast ion transport wall modes			
Hybrid	Efficient CD, Robustness	Current evolution βN limit			
Peaked	Good confine't no RWM	Sustainment; Tearing. Disrupts			

Performance (β) Wall mode kinetic damping and fast ion instabilities vs. current profile

 Burning Plasma Conditions (Ω T_c/T_i P_{ci})

 Turbulent transport & kinetic effects in thermalized plasmas at low rotation

thermalized plasmas at <u>low rotation</u> Core-Edge Integration (n, q)

High density and power to understand impurity and core-edge optimization

rofile H&CD tools: Disrupts Off axis beam ECCD

Peaked

Hybrid

Unique flexibility to develop scenarios & resolve predictive science for FPP core

Resonant 3D field ELM suppression with flexible coil arrays QH and other benign ELM regimes: resolve controlling edge

 QH and other benigh LLM regimes: resolve controlling edge physics & ExB rotation requirements with flexible profile control

'peeling limited' pedestals to resolve integrated scenarios

• ELM control: Unique access to relevant low rotation & collisionality

- Pellet pacing: sufficient triggering and heat reduction
- **Plasma control:** Unique headroom through α-like electron heating, with precise deposition & profile control
 - Burn simulation & control with FPP-like actuator and measurement constraints
 - Tearing mode control via direct island deposition or profile control
 - Disruption avoidance: Machine learning, faster-than-RT simulation, sensing
 - Digital twin develops robust schemes offline for testing online

DIII-D the key proving ground to resolve tokamak control & non-linear multiscale physics of MHD phenomena

Electron Heating Rise Provides Crucial Capability to Resolve Transient Control in Relevant Regimes

These Capabilities Enable DIII-D to Address Plasma Behavior and Interaction Questions Across the Board for FPP

E	C							
Lines	Power	←KEY TECHNIQUES →						
6	3-4 MW	Disruption mitigators	Entry point for high q _{min} AT	Divertor science & geometry tests	Novel RF technologies	FPP Diagnostic	cs	
		Perturbative transport in H-mode	Shape rise & pedestal density & pressure limits	Radiative techniques	Peeling limited pedestals for ELMs	Materials erosion & transport	Sample &	
8 5.6 MW		ITER dual			testing			
		control, Q=10	AT stability limits	Pulsed FPP scenarios	ELM mitigation low rotation 8	nat (v*	Control impurity accumulation	
10	7 84/8/	FPP-like fast ions	Alternate ITER	Burn	Divertor science	in	WITH ECH	
10	/ //////	ITER ramp up	scenarios	simulation	opaque conditio	ons Co	Components & materials at high	
+ add	itional NBI,	& steady state	Opaque High performance		ince Mate		, density, q	
Possi	bly more	low rotation, T _e ~T _i , high β	collisionless pedestals	& high dissipa core-divertor so with high SOI	Ition integr Iutions with L v*	ation core		
some	eaea ror missions		COR	E – EDGE INTE	GRATION			

Close plasma research and FM&T gaps for FPP

RJ Buttery/Open Call Background 2025/16

New "Chimney" Divertor Concept will Resolve Key Physics & May Offer Improved Divertor Solution

Longer leg

- Isolates physics for model validation
- Avoids X point degradation

"Chimney" design improves detachment

Mid-leg pump stabilizes radiation front at duct

Divertor

SOLPS predicts cold dense target & hot X with good stability

Test key principles behind divertor design

RJ Buttery/Open Call Background 2025/17

New Tungsten Wall to Resolve Fusion Solutions in Reactor Relevant Conditions

- Wall a key constraint on the plasma solution
 - Must tolerate core scenario
 - Influence detachment, pedestal, core performance & stability
- DIII-D carbon wall influences core radiation, outgassing & erosion —Time to confront this → DIII-D moving to W wall in 2027
- Adapt DIII-D developed scenarios for W environment,
 - Benefiting from key mitigations in core, pedestal & divertor
- Test innovative new materials without carbon
 - Better solutions needed than tungsten
- Resolve integrated core-edge-wall-technology solutions

Tungsten wall transforms the context of much of DIII-D's research

FPP Technology Development Program Pioneers New Solutions

HES-LHCE

RJ Buttery/Open Call Background 2025/19

DIII-D brings key characteristics necessary

- Flexibility, diagnosis, relevant regimes, integration
- Swap out components rapidly & often
 - Difficult \rightarrow impossible in activated or tritiated devices
- Assess with relevant solutions for wall divertor & core

Technology Group spans 1/3rd of DIII-D program

- Platform approach with rapid facilitated access
 - Materials, control, diagnostics, components

Pursue key innovative techniques

- Disruption mitigation: pellets & passive coil
- Helicon & HFS-LHCD RF
- Reactor fueling
- Spin polarized fusion

Key capabilities that will qualify critical fus

Proven track record

Materials interactions

- Explore degradation
- Understand transport
- Assess divertor leakage

Studies of W & ELM behavior, and new materials

DIII-D Providing Key Testing Ground for Innovative Materials

- Divertor Materials Evaluation Station

 - well-diagnosed shot-to-shot replacement
 - varving geometries relevant plasma loads

Tiles & rings to assess materials on bulk scale

Diagnostic	Interest
IR imaging	Heat flux
Spectrometer	Erosion
Langmuir Thomson	Plasma parameters
Thermocouples	Temperature

Exploring new alloys, ceramics & liquid metals

Unique insights and tests possible

RJ Buttery/Open Call Background 2025/20

Negative Triangularity Provides Transformational Potential for Fusion (not yet funded)

- Negative Triangularity gave high confinement with low power to divertor and no ELMs
 - DIII-D changed hardware to test diverted 'NT'
 - in just two weeks!
 - Exciting results with great confinement & stability
- New closed pumped NT divertor will combine with ECH upgrade to close remaining gaps
 - Core-edge integration:
 - Detachment with high performance core
 - Assess Advanced Tokamak & wall compatibility

Negative Triangularity could upend the tokamak concept !

Cryo-pumped full closed NT divertor

Rapid, free, flexible-scope access in as little as a day

DIII-D Tests Common Research Needs of Novel Fusion Concepts, Fundamental Science and Technology

- Many common fundamental processes behind fusion & wider plasma physics
 - Different configurations: common physics and technology questions

- Wide range of fundamental plasm physics with DP
- Organic molec in meteor tails

Tested SPARC error fiera correction & the rechnology

Incredible flexibility to answer key questions

51

(MHz)

0.0

-0.5 E

DIII-D Provides Distinctive Capabilities Internationally and Basis to Lever US Collaborations

Develop techniques at high power density

- Flexibility to resolve & integrated innovative exhaust, core and wall solutions
 - High opacity, low v*, high performance, burning plasma relevant conditions
- Physics basis to project

Long pulses test evolution & wall

 Material & PFC evolution

> Long pulse control

> > NSTX-U

Larger devices test scaling

- JT-60SA)
- Projection
 to reactor
 - Operational techniques

Key physics & novel techniques

- Aspect ratio & Shape
- Extreme divertor geometry
- + Super Alfvénic ions & high β

ASDEX Upgrade · Liquid metals

Important to focus on insights that lever international progress

DIII-D Providing Critical Roles in Preparation for ITER

Distinctive Contributions:

- Develop & accelerate early phase ITER research plan
 H mode access, ELM control, EC ramp up, DMS tests
- Resolution of transients & development of ITER control
 - Stability, ELMs, disruptions, runaway electrons
 - Control development & burn simulation
- Validated physics models to project and interpret behavior in relevant low rotation conditions in ITER
 - Turbulent transport in coupled, opaque, low ν^{*} & Ω regimes
 - Wall to core Tungsten transport, MHD turbulence and AEs
- Development of robust, controlled scenarios to reach or exceed Q=10 & determine path to Q=5 steady state

Key Capabilities:

Carbon → Tungsten wall

EC: torque-free electron heating with precise deposition control

Balanced torque NBI

New quench systems

Integrated control

Pellets for high density

3D coils

Advanced measurements

– Baseline, reduced current & high β paths with radiative solutions

US success and benefit in ITER – key for wider fusion path – <u>requires</u> DIII-D to prepare techniques, tools & team

DIII-D Provides a Critical and Cost-Effective Tool to Make Rapid Progress on the Bold Decadal Vision

- Highly flexible user facility able to pioneer the tokamak path to FPP
 - -Tokamak serves as 'first integrator' to resolve fusion technologies more broadly
- Critical enabler of the wider vision & the private sector through technology testing, its flexibility & measurement systems, and sharing its expertise
- Serves entire fusion community well & productive now on all these goals
 - -Developing people, sharing knowhow, enabling success in private sector & ITER

Get in touch if you want to participate!

RJ Buttery/Open Call Background 2025/26