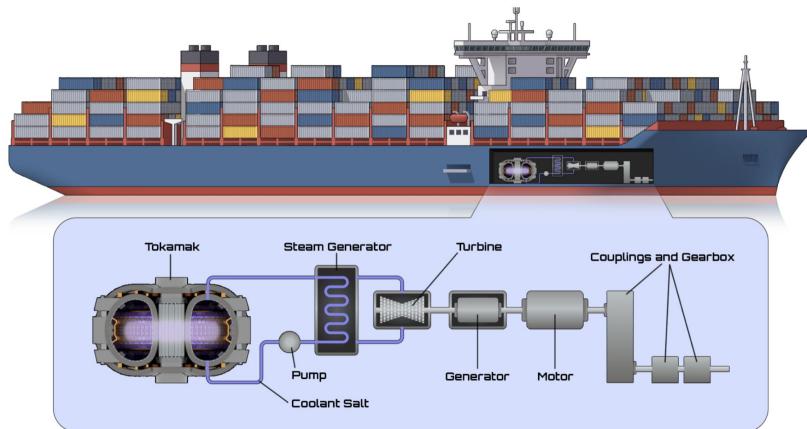


MARITIME FUSION


An Introduction: Low Power Density Tokamaks for Off Grid Applications

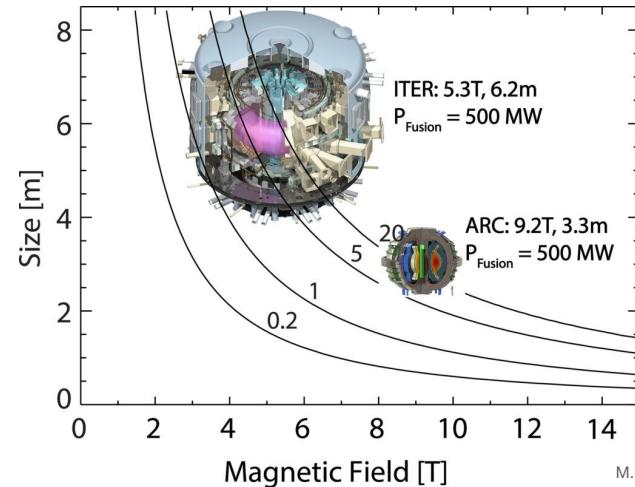
Presenter: Justin Cohen

Maritime Fusion: Past, Present, and Future

- Company launched via Y Combinator in early 2025
- Rough 0D reactor design
- Closed our seed round earlier this year
- Opened our HQ in San Francisco, grew headcount to 8

- Develop, manufacture, and test our HTS cable
- Publish a detailed physics basis
- Model the economically viable operations of fusion powered vessels
- Contractual obligations with customers

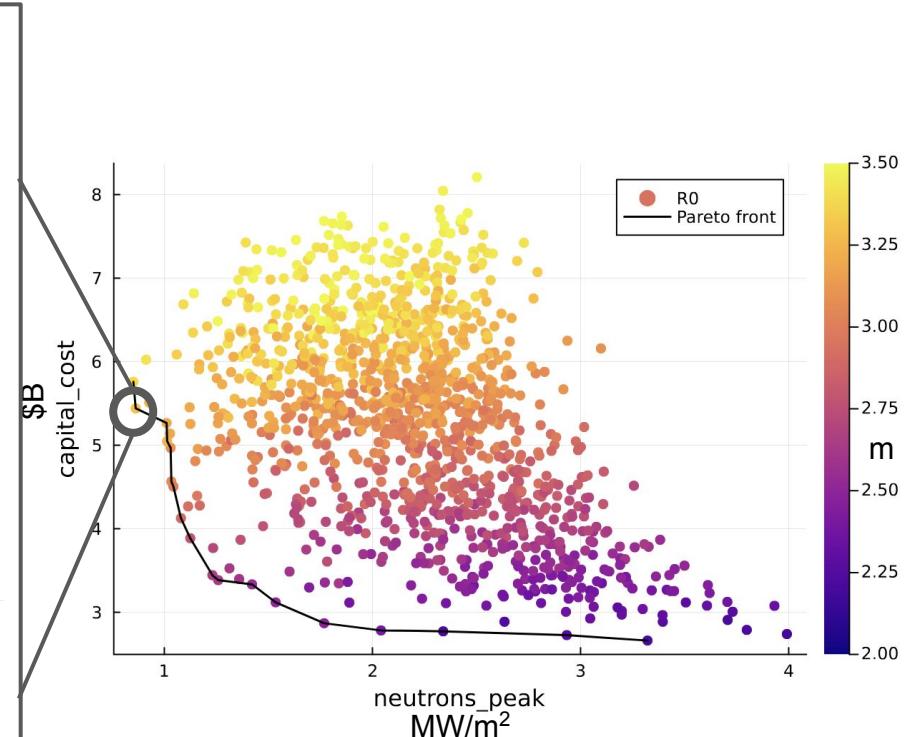
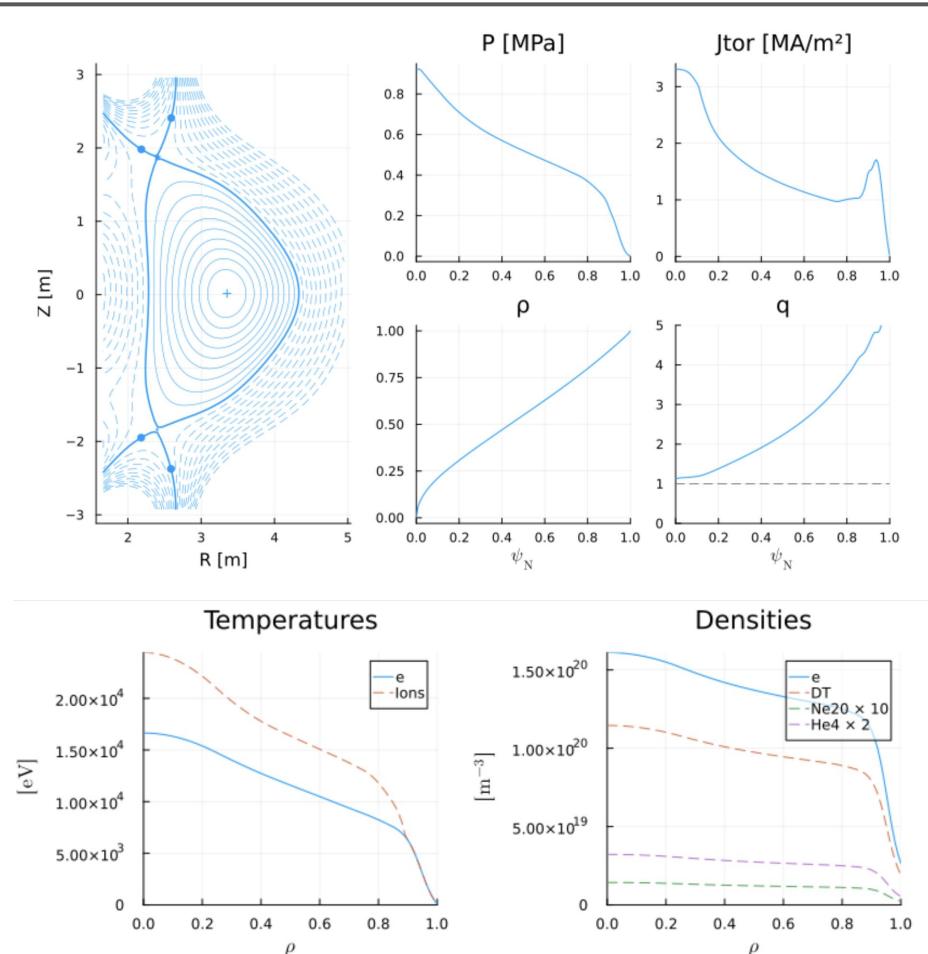
- No intermediate sized device, full scale Yinsen tokamak demonstrator 2032-2035



WHY NOT THE GRID?

The FOAKs Battle Against Material Science for Cost

Trade large expensive reactor that doesn't require any more Nobel prizes → smaller cheaper reactor that requires decades of innovation for commercial viability



M. Greenwald, 2019

Minimize Reactor Construction Cost	Compact and High Field	High Heat Flux, Mechanical Stresses, Activated Structures	Low in Vessel Lifetimes, Maintenance Operations, Low Capacity Factor	Not Competitive Power Source on the Grid
------------------------------------	------------------------	---	--	---

Tokamak Design Point

MARITIME FUSION

Each point in the plot is a fully resolved design
- each with solutions for equilibrium, transport,
HCD, etc...

Resulting device is roughly JET-sized...

GEOMETRY

$R_0 \rightarrow 3.31$ [m]
 $a \rightarrow 1.02$ [m]

$1/\epsilon \rightarrow 3.23$

$\kappa \rightarrow 1.82$

$\delta \rightarrow 0.82$

$\zeta \rightarrow -0.0155$

Volume $\rightarrow 106$ [m³]

Surface $\rightarrow 180$ [m²]

JET $R_0: 2.96$ m
JET $a: 1.25$ m

EQUILIBRIUM

$B_0 \rightarrow 7.86$ [T]
 $i_p \rightarrow 7.51$ [MA]
 $q_{95} \rightarrow 4.85$
 $\langle B_{pol} \rangle \rightarrow 1$ [T]
 $\beta_{pol_MHD} \rightarrow 1.11$
 $\beta_{tor_MHD} \rightarrow 0.0179$
 $\beta_{n_MHD} \rightarrow 1.97$

Operating at
nearly twice
JET's field and
1.5x plasma
current

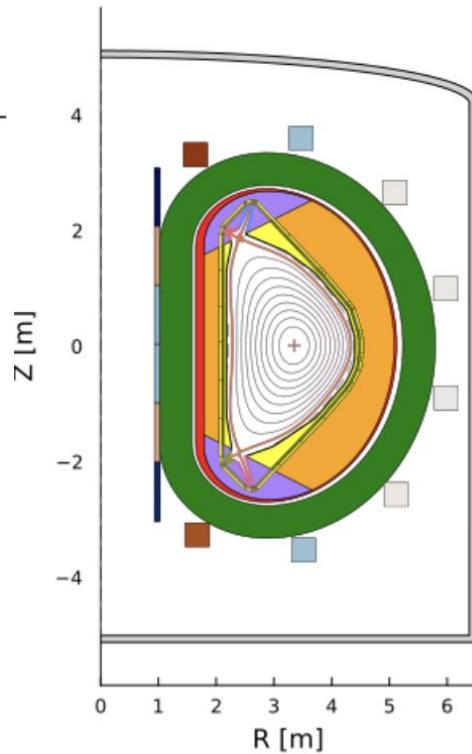
TEMPERATURES

$T_{e0} \rightarrow 16.6$ [keV]
 $T_{i0} \rightarrow 24.4$ [keV]
 $\langle T_e \rangle \rightarrow 9.5$ [keV]
 $\langle T_i \rangle \rightarrow 13.2$ [keV]
 $T_{e0}/\langle T_e \rangle \rightarrow 1.75$
 $T_{i0}/\langle T_i \rangle \rightarrow 1.85$

DENSITIES

$n_{e0} \rightarrow 1.61e+20$ [m⁻³]
 $n_{e_ped} \rightarrow 1.08e+20$ [m⁻³]
 $n_{e_line} \rightarrow 1.37e+20$ [m⁻³]
 $\langle n_e \rangle \rightarrow 1.24e+20$ [m⁻³]
 $n_{e0}/\langle n_e \rangle \rightarrow 1.3$

$f_{GW} \rightarrow 0.602$


$z_{eff_ped} \rightarrow 2$

$\langle z_{eff} \rangle \rightarrow 2$

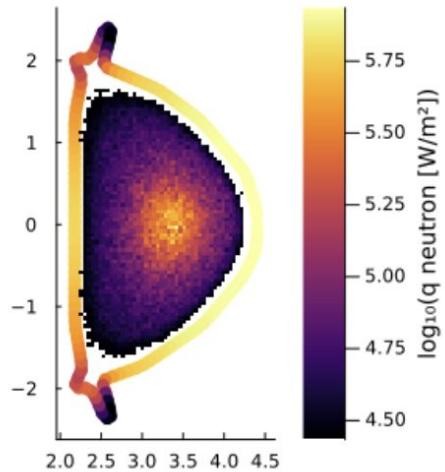
impurities \rightarrow DT Ne20 He4

PRESSESURES

$P_0 \rightarrow 0.947$ [MPa]
 $\langle P \rangle \rightarrow 0.439$ [MPa]
 $P_0/\langle P \rangle \rightarrow 2.16$
 $\beta_n \rightarrow 1.91$
 $\beta_{n_th} \rightarrow 1.91$

But achieves a SPARC-like P_{fusion} and 30+ MW net electric

Yinsen has an advantage over other devices in power handling with P_{SOL} / R limited to **9.6 MW/m** in this case → 67% the ITER/DEMO limit of 15 MW/m!
[1]

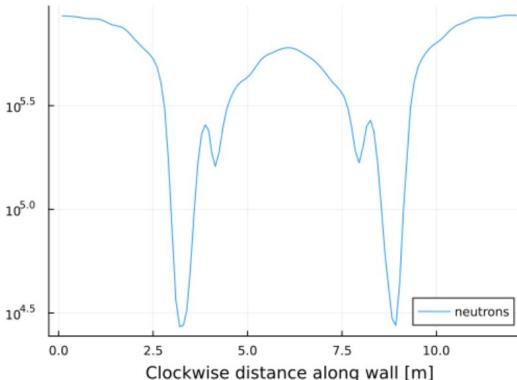

SOURCES	EXHAUST	CURRENTS
<code>Pec</code> → NaN [MW]	<code>Psol</code> → 31.8 [MW]	<code>ip_bs_aux_ohm</code> → 7.52 [MA]
<code>rho0_ec</code> → NaN [MW]	<code>PLH</code> → 25 [MW]	<code>ip_ni</code> → 2.51 [MA]
<code>Pnbi</code> → NaN [MW]	<code>Bpol_omp</code> → 1.15 [T]	<code>ip_bs</code> → 2.26 [MA]
<code>Enbil</code> → NaN [MeV]	λq → 0.965 [mm]	<code>ip_aux</code> → 0.253 [MA]
<code>Pic</code> → 7.66 [MW]	<code>qpol</code> → 1.21e+03 [MW/m ²]	<code>ip_ohm</code> → 5.01 [MA]
<code>Plh</code> → NaN [MW]	<code>qpar</code> → 6.45e+03 [MW/m ²]	<code>ejima</code> → 0.4
<code>Paux_tot</code> → 7.66 [MW]	<code>P/R0</code> → 9.62 [MW/m]	<code>flattop</code> → 0.105 [Hours]
<code>Pa</code> → 33.7 [MW]	<code>PB/R0</code> → 75.6 [MW T/m]	
<code>Pohm</code> → 0.456 [MW]	<code>PBp/R0</code> → 9.62 [MW T/m]	
<code>Pheat</code> → 41.8 [MW]	<code>PBe/R0q95</code> → 4.83 [MW T/m]	
<code>Prad_tot</code> → -10 [MW]	<code>neutrons_peak</code> → 0.863 [MW/m ²]	
$\text{SPARC } P_{\text{fusion}} =$		
140 MW		
<hr/>		
BOP		
<code>Pfusion</code> → 168 [MW]	<code>PF_material</code> → rebco	<code>capital_cost</code> → 5.44 [\$B]
<code>Qfusion</code> → 22	<code>TF_material</code> → rebco	<code>levelized_CoE</code> → 2.05 [\$/kWh]
<code>thermal_cycle_type</code> → rankine	<code>OH_material</code> → rebco	<code>TF_of_total</code> → 10.5 [%]
<code>thermal_efficiency_plant</code> → 36.9 [%]	<code>TF_max_b</code> → 16.4 [T]	<code>BOP_of_total</code> → 3.98 [%]
<code>thermal_efficiency_cycle</code> → NaN [%]	<code>OH_max_b</code> → 8.21 [T]	<code>blanket_of_total</code> → 3.2 [%]
<code>power_electric_generated</code> → 63.1 [MW]	<code>TF_j_margin</code> → 1.15	<code>cryostat_of_total</code> → 0.865 [%]
<code>Pelectric_net</code> → 38.4 [MW]	<code>OH_j_margin</code> → 1.15	
<code>Qplant</code> → 2.56	<code>TF_stress_margin</code> → 1.15	
<code>TBR</code> → 1.1	<code>OH_stress_margin</code> → 1.26	

CURRENTS

```

ip_bs_aux_ohm → 7.52 [MA]
ip_ni → 2.51 [MA]
ip_bs → 2.26 [MA]
ip_aux → 0.253 [MA]
ip_ohm → 5.01 [MA]
ejima → 0.4
flattop → 0.105 [Hours]

```



COSTING

```

capital_cost → 5.44 [$B]
levelized_CoE → 2.05 [$/kWh]
TF_of_total → 10.5 [%]
BOP_of_total → 3.98 [%]
blanket_of_total → 3.2 [%]
cryostat_of_total → 0.865 [%]

```


Proposals for Collaboration DIII-D <> Maritime Fusion

(more are welcomed)

Focus Area	DIII-D Experiment	Relevance for Maritime Fusion
Power-exhaust control (P_SOL, f_{rad})	20 MW NBI + 4 MW ECH, impurity seeding (Ne/N ₂ /Ar), SAS divertor, $f_{rad} \approx 0.9$ possible	Anchors radiative-mantle and detached operation needed for low-heat-flux Yinsen wall
Edge/SOL similarity (λ_q, detachment)	$\lambda_q \propto B_p^{-1}$ scaling accessible via $I_p/q95$ scans; SAS tungsten divertor for heat-flux mapping	Extrapolate λ_q and detachment windows to Yinsen's high- B_p regime
ELM-free confinement (NT & QH)	Mature negative-triangularity and QH-mode; ELM-quiet plasmas at $\beta N \approx 3-4$	Benchmarks pedestal structure and transport regime for Yinsen's steady, ELM-quiet flattops
Tungsten compatibility	First wall test section for W source/leakage studies at high f_{rad}	Demonstrates impurity screening and allowable Z_{eff} for compact devices
High βN confinement with benign wall loading	βN up to ~5, strong shaping control ($\kappa \approx 2$, $\delta \pm 0.4$), dimensionless similarity scans (ρ^* , v^*)	Validates achievable pressure & MHD stability limits for compact high-field reactor