

Engineering the future of fusion: The crucial role of refractory metals

2025 Industry Day at DIII-D National Fusion Facility, Nov. 14, 2025

Dr. Arno Plankensteiner, Director Corporate Research Plansee HPM

Plansee SE, Reutte, Austria

“

**Our metals drive machines,
bring light into our homes,
transmit words and images
over long distances and
perform thousands of other
useful and important
services.”**

Paul Schwarzkopf

Founder of Metallwerk Plansee Ges.m.b.H.

Key facts about Plansee

Plansee is the world's leading manufacturer of tungsten and molybdenum components.

Held since 1952, the **Plansee Seminar** brings together experts from the refractory metals and carbides industry every four years

Over **150 international R&D experts** develop customized solutions in close collaboration with customers and academic partners

Our **accredited laboratories** ensure top quality through advanced analytics, from raw materials to finished products.

We source **100% of 3TG** (tin, tungsten, tantalum and gold) materials from **certified conflict-free smelters**

PLANSEE

Mi-Tech
TUNGSTEN
Metals

GTP

Strong Materials

42	95.94
Mo	
Molybdenum	

74	183.84
W	
Tungsten	

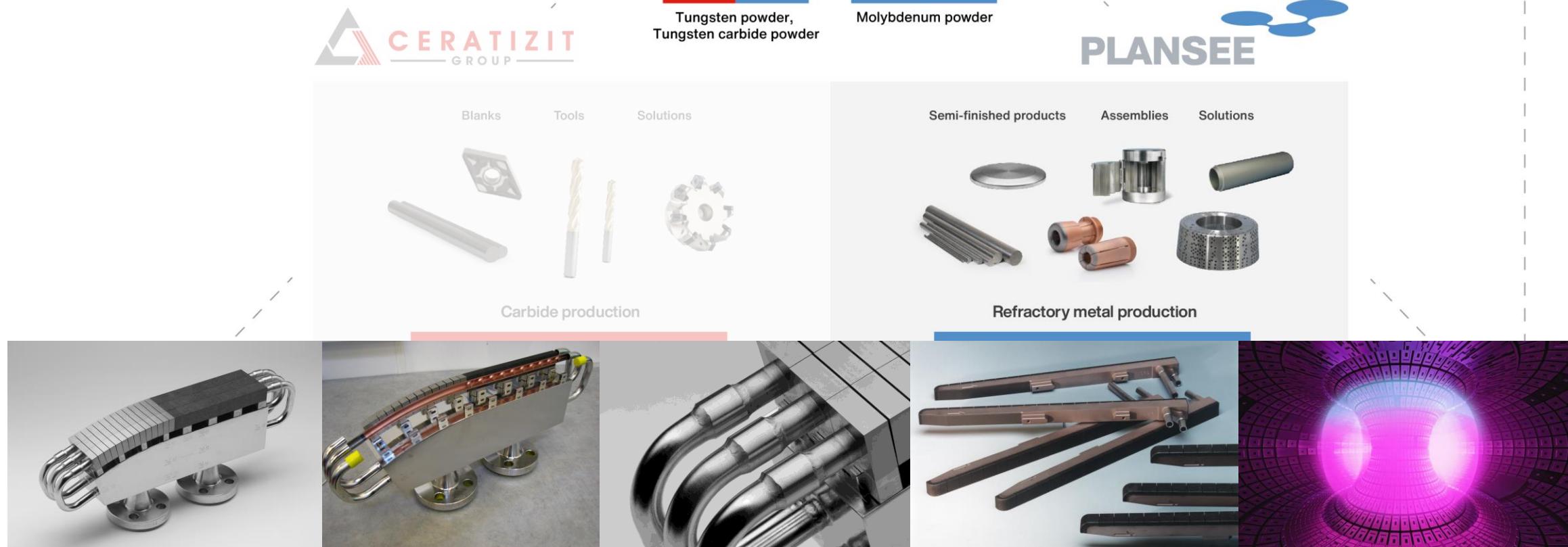
Heat resistance,
dimensional stability,
and high strength

Good electrical
and thermal
conductivity

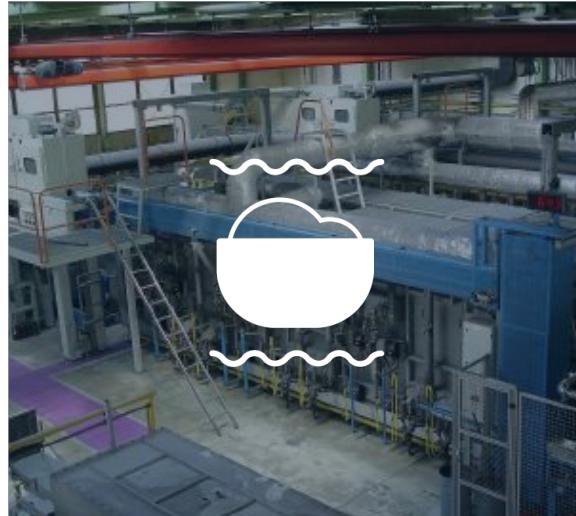
Low coefficient
of thermal
expansion

High corrosion
resistance

Shielding of X-ray-
and gamma
radiation

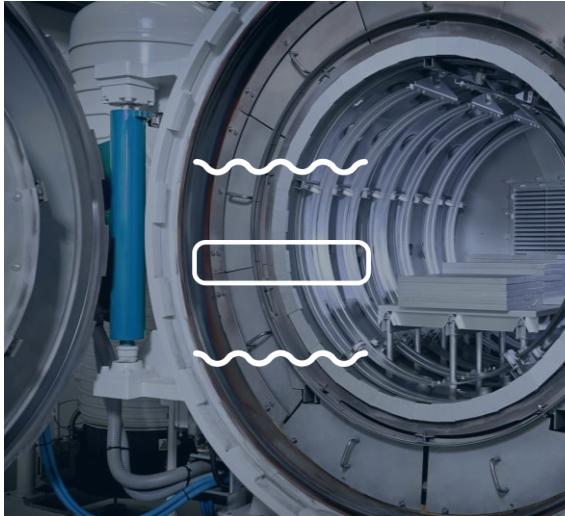


Tungsten – Properties, Grades

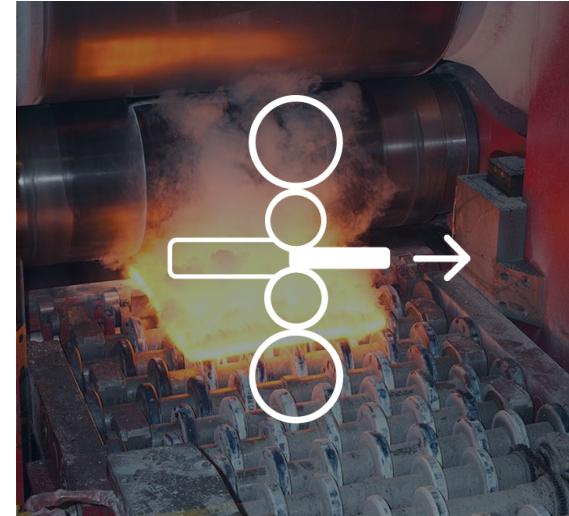

	42	95.94	Mo	Molybdenum
	74	183.84	W	Tungsten
Melting point [°C]		2620		3420
Boiling point [°C]		4639		5555
Density [g/cm³]		10.22		19.25
Coefficient of thermal expansion [10⁻⁶/K]		5.2		4.4
Thermal conductivity [W/(m K)]		142.0		164.0
Electrical conductivity [m/(Ω mm²)]		17.9		18.2
Specific heat [J/(g K)]		0.25		0.13
Sonic speed [m/s]	Long: 6250 Trans: 3350		Long: 5180 Trans: 2870	
Young's-modulus⁽¹⁾ [GPa]	320		405	
Magnetic permeability	Paramagnetic material ($\mu \approx 1$)			

Material designation	Chemical composition (percent by weight)	
W (pure)		> 99.97% W
W-UHP (ultra-pure)		> 99.999% W
WVM		30–70 µg/g K
WVMW		15–40 µg/g K
WL	WL05 WL10	0.5% La ₂ O ₃ 1.0% La ₂ O ₃
WC20		2.0% CeO ₂
WRe	WRe05 WRe26	5.0% Re 26.0% Re
WCu*		10–40% Cu
W heavy metal* alloy with a high density	Densimet® Inermet® Denal®	1.5%–10% Ni, Fe, Mo 5%–10% Ni, Cu 2.5%–10% Ni, Fe, Co

From raw material to the finished product



Our production process – *Excerpt* in view of fusion


Powder production

- Starting w/ ore concentrates and oxidic powders
- Reduction to metal powders
- Homogenization, blending
- Powder compaction (up to ingot sizes of Ø1.5m x 2.0m)


Sintering

- Sintering in H₂ or vacuum
- Ingot masses up to 3.5t (Mo) or 2.0t (W)
- H₂ production via steam reforming and electrolysis
- Alternatives: SPS, HP, HIP

Forming

- Rolling mills ($F_{max} < 50000\text{kN}$)
- Radial forgers ($F_{max} < 6000\text{kN}$)
- Screw presses ($F_{max} < 30000\text{kN}$)
- Wire drawing
- Cold rolling mills

Machining / Surface techn.

- CNC milling and turning centers ($< 2.0 \times 2.0 \times 1.0 \text{ m}^3$, $< \varnothing 0.5\text{m} \times 1.7\text{m}$)
- EDM, die sinking
- Deep drawing
- Lapping, e-polishing, pickling

Strong on expertise, strong on technologies

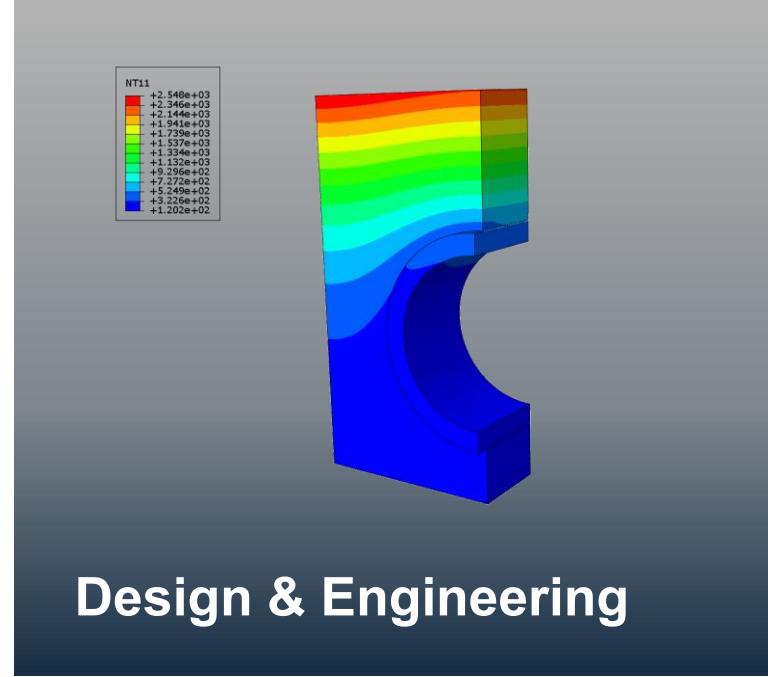
Joining

- Welding – under protective atmosphere via LBW and TIG
- Welding – filler assisted welding with TZM-, MoRe-, MoC-filters
- Brazing (800°C-2000°C) with Al-, Cu-, Ni-, Ag-, Au-, Pd-, Pt-brazing alloys

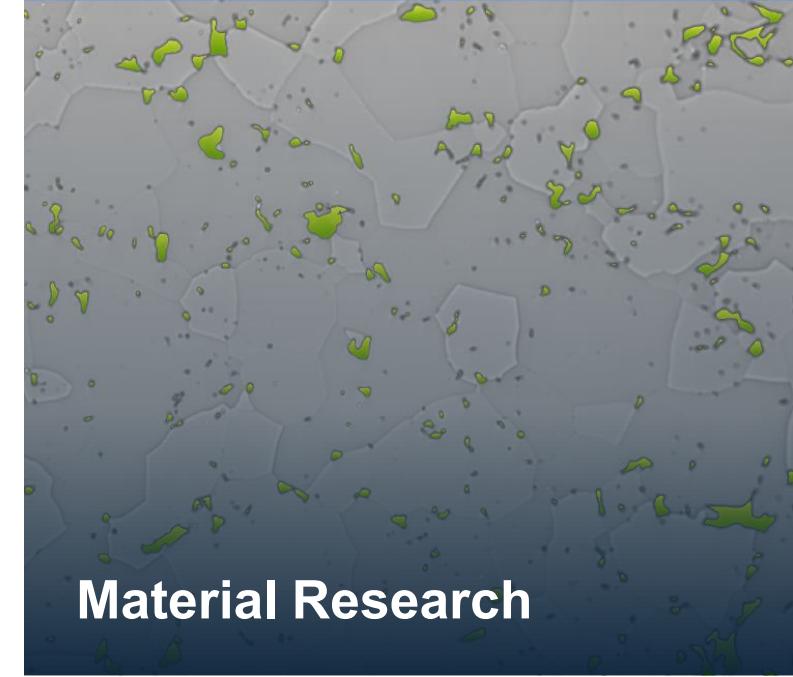
Surface Techn. / Coating

- PVD (magnetron sputtering, Arc-PVD)
- Galvanic coatings
- CGS for consolidation of multiphase-materials and thick coatings
- APS, VPS

Additive Manufacturing


- Mo and W: Beam-based (LPBF, micro-doping for >99% density)
- WHA: Sinter-based methods (div. methods, fully dense, properties of sintered materials)
- AM-specific design process and QA

Strong on expertise, strong on quality and innovation


Laboratory

- Fully equipped labs. on latest stage of technology:
- EN ISO/IEC 17025 and 17020 certif.
- Chemical analysis
- Powder competence center
- Metal-physical lab.
- Mechanical-techn. lab.
- Non-destructive testing lab.

Design & Engineering

- Department for computational methods:
- FEM, CFD, DEM, MD
- Multi-physics simulations
- Machine learning
- APP programing

Material Research

- Research aiming at improving properties of RM bridging length scales from μm (microstructure) to m (manufacturing, applications), e.g.:
 - Micro-doping for RT-ductility
 - Alloying (with Re, Ta, ...) for strength
 - RM-based High Entropy Alloys (HEA) with superior properties

Strong Metals. Strong Goals.

www.plansee.com

Let's cooperate!

DI Dr. Arno Plankensteiner
Director Corporate Research Plansee
6600 Reutte, Austria
Tel.: +43 5627 600 2229
Mobile: +43 664 8152563
ap@plansee.com